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Abstract

Consideration of the viscous dissipation effects in natural and mixed convection heat transfer must be taken care-

fully, both in what concerns the thermodynamics of the problem and the relevance of the dissipation term. This applies

equally to external or internal natural and mixed convection, and to spaces filled with a single fluid or to spaces filled

with fluid-saturated porous media. The main question is related to the fact that, in natural convection, the work done

by the pressure forces must equal the energy dissipated by viscous effects, which is the unique situation compatible with

the First Law of Thermodynamics, the net energy generation in the overall domain being zero. If only the (positive)

viscous dissipation term is considered in the energy conservation equation, the domain behaves like a heat multiplier,

the heat output being higher than the heat input. If this is not taken into consideration, erroneous conclusions about

flow and temperature fields and heat transfer results are obtained. In mixed convection problems, part of the viscous

dissipation term is equally due to the work of pressure forces. Attention is given mainly to the natural convection prob-

lem in a square enclosure, the main conclusions applying for general natural or mixed convection heat transfer

problems.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Viscous dissipation is not usually taken into account

when dealing with natural convection heat transfer

problems. From an order of magnitude analysis it can

be concluded that such an approach is usually correct,

both when the domains are filled with a single fluid or

when the domains are filled with fluid-saturated porous

media. Some works can be referred, however, that in-

clude the viscous dissipation into the energy equation,

for some natural convection problems in open fluid do-
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mains [1–6] or in domains filled with a fluid-saturated

porous medium [7–11], as well as for mixed convection

problems [12–17]. The present work is mainly motivated

by some works dealing with natural and mixed convec-

tion heat transfer problems taking into account the vis-

cous dissipation effects without considering the work of

pressure forces, to which some comments must be ad-

dressed and some clarifications need to be made.

Emphasis is given to the natural convection heat

transfer problem in a square enclosure heated from the

side, with upper and lower perfectly insulated walls,

but the main conclusions apply equally to any natural

or mixed convection problem. Important conclusions

are also obtained for a better understanding of the nat-

ural convection heat transfer problem as a heat engine.
ed.
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Nomenclature

cP constant pressure specific heat

Da Darcy number

Ec Eckert number

g gravitational acceleration

H height

K permeability

Nu Nusselt number

p pressure

Pr Prandtl number
_Q heat flow, by unit depth

Ra Rayleigh number
_S entropy flow

T temperature

u, v Cartesian velocity components

V volume
_W mechanical power, by unit depth

x, y Cartesian co-ordinates

Greek symbols

a thermal diffusivity

b volumetric expansion coefficient

DT temperature difference

m kinematic viscosity

q density

w streamfunction

Subscripts

C cold (lower temperature) value

CD conduction

D viscous dissipation

gen generation

H hot (higher temperature) value

in inlet

out outlet

0 reference value

* dimensionless

Superscript

d driving value
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From a thermodynamic viewpoint, a lumped (exact)

energy analysis can be made to the enclosure, showing

that special care must be taken when considering the vis-

cous dissipation. The energy balance for the enclosure

requires the heat input equal to the heat output of the

enclosure. In this way, the global heat generation in

the domain must be null. This is true in both cases,

where the viscous dissipation is considered or not. How-

ever, when it is considered, an apparent paradox exists:

how can the heat output equal the heat input if a posi-

tive viscous dissipation exists? The answer is that the

term corresponding to the work of pressure forces must

also be considered in the energy equation and, when

integrated over the overall domain, it equals the integral

of the viscous dissipation term over the domain. If the

work of pressure forces is not taken into account, if it

is not taken into account in the correct way, or if the vis-

cous dissipation term is not taken into account in the

correct way, artificial heat generation or destruction

can be introduced. If it is the case, erroneous results

for the flow and temperature fields and for the heat

transfer performance of the enclosure are obtained.

The influence of the work of pressure forces on some

natural convection heat transfer problems has been the

subject of previous works [3,6,18,19].

Also important is the fact that many natural convec-

tion studies use the Boussinesq approximation and the

dimensionless version of the governing equations. In or-

der to increase the importance of the viscous dissipation,

some non-realistic values can be given to the dimension-
less governing parameters, thus leading to results associ-

ated to non-realistic situations.
2. Thermodynamic analysis

Natural convection heat transfer in enclosures heated

from the side can be analyzed from the thermodynamic

viewpoint, considering the models present in Fig. 1a and

b. In particular, a square enclosure with side length H is

considered.

Near the left vertical hot isothermal wall, part of the

heat input increases the temperature of the fluid, which

expands and rises in level. The remaining heat input is

transferred by conduction towards the cold wall. It is as-

sumed that the involved fluid expands when its temper-

ature increases (b > 0), even if some particular cases can

be pointed out for which b < 0. Near the right vertical

cold isothermal wall the heat released results in a de-

crease of the fluid temperature, the fluid contracts and

sinks down. As the enclosure is closed, a loop is estab-

lished for the fluid flow, and a combined conduction–

convection action that promotes heat transfer from the

hot wall to the cold wall occurs. The so originated fluid

current could move a propeller if it were present. In real-

ity, the viscous dissipation partially brakes the fluid

flow, in a way similar to the propeller if it were present

in the fluid current. In this way, an equilibrium situation

is reached, the power obtained from the expansion–con-

traction cycle being viscously dissipated as heat. This is
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Fig. 1. The natural convection problem in a enclosure heated

from the side: (a) usual flow and heat transfer picture; and (b)

thermodynamic model including the work of pressure forces

and the viscous dissipation.
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the picture of the natural convection problem as pre-

sented in Fig. 1a.

Its corresponding thermodynamic model is presented

in Fig. 1b. The difference of temperature through the

enclosure is used to operate a reversible thermal engine,

which uses part of the heat input and delivers the

mechanical power _W . This mechanical power is inte-

grally dissipated in a brake (the thermodynamic model

of the viscous dissipation mechanism), and the dissi-

pated heat is released at the right cold vertical wall. It

can be seen that, even when the viscous dissipation is

considered,

_Q ¼ j _QCj ¼ j _QHj ð1Þ

In fact, the First Law of Thermodynamics applied for

the overall enclosure (a closed system) gives ðdE=dtÞ ¼
_Qþ _W , where E is the total energy, E = U +

(1/2)mV2 + mgz, and _Q and _W are taken as positive

when entering the thermodynamic system. If natural

convection takes place in steady-state _Qþ _W ¼ 0 or,

expanding _Q in its contributions _QH and _QC,
_QH þ _QC þ _W ¼ 0. As there is no any rotating shaft or

other mechanical device through which the enclosure ex-

changes work with its neighborings it is _W ¼ 0, and
_QH ð> 0Þ þ _QC ð< 0Þ ¼ 0, that is, _Q ¼ j _QCj ¼ j _QHj.
This result is independent of the medium that fills the

enclosure.

In that case, the work of pressure forces (mechanical

power _W ) globally equals the viscous dissipation, _QW. In

steady-state conditions, no heat is gained or lost in the

enclosure, and it is to be noted that flow exists as the re-

sult of using some of the heat input. If the viscous dissi-

pation term is taken into account in the energy

conservation equation, without considering the work

of pressure forces, a net heat generation occurs in the

enclosure, and it is j _QCj ¼ j _QHj þ j _QWj > j _QHj. This is,
however, a situation violating the First Law of Thermo-

dynamics, that applied over the overall enclosure gives

j _QCj ¼ j _QHj. If it is j _QCj > j _QHj the enclosure behaves

as a heat multiplier, for which j _Qoutj > j _Qinj. Only if

any heat generation of different nature than the viscous

dissipation or work of pressure forces, like a chemical

reaction or an electrical resistance, it is j _QCj > j _QHj.
From the Second Law of Thermodynamics, the rate

of entropy generation in the enclosure is

_Sgen ¼ ð _SgenÞCD þ ð _SgenÞD ¼ _Q
1

T C

� 1

TH

� �
ð2Þ

where ð _SgenÞCD is the rate of entropy generation due to

heat diffusion and ð _SgenÞD is the rate of entropy genera-

tion due to viscous dissipation. Each of these terms can

be evaluated alone [20], but the overall rate of entropy

generation in the domain can be evaluated from an over-

all entropy balance for the enclosure, which gives
_Sgen ¼ _Qð1=T C � 1=THÞ.
3. Enclosure filled with a single fluid

Usually, without considering the viscous dissipation

term and the work of pressure forces, only the convec-

tion–diffusion energy contributions of the problem are

considered. In this case, j _QCj ¼ j _QHj, and in terms of

the overall Nusselt numbers NuC = NuH. By the afore-

mentioned reasons NuC = NuH must hold to have a con-

sistent energy formulation, with or without considering

the complete energy form of the problem.
3.1. Physical modeling

The dimensionless version of the complete equations

governing the steady natural convection heat transfer

problem, for a fluid of constant properties other than

density, are [20–22]

o

ox�
ðq�u�Þ þ

o

oy�
ðq�v�Þ ¼ 0 ð3Þ
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o

ox�
ðq�u�u�Þ þ

o

oy�
ðq�v�u�Þ

¼ � opd�
ox�

þ Pr
o
2u�
ox2�

þ o
2u�
oy2�

� �

þ 1

3
Pr

o

ox�

ou�
ox�

þ ov�
oy�

� �
ð4Þ

o

ox�
ðq�u�v�Þ þ

o

oy�
ðq�v�v�Þ

¼ � opd�
oy�

þ Pr
o2v�
ox2�

þ o2v�
oy2�

� �
þ 1

3
Pr

o

oy�

ou�
ox�

þ ov�
oy�

� �
þ RaPrb�T � ð5Þ

o

ox�
ðq�u�T �Þ þ

o

oy�
ðq�v�T �Þ

¼ o2T �

ox2�
þ o2T �

oy2�
þ Ecb0T 0b�

DT
T 0

T � þ 1

� �

� u�
opd�
ox�

þ v�
opd�
oy�

� RaPr
b0DT

� �� �
þ EcPrU� ð6Þ

where the dimensionless dissipation function is given by

U� ¼ 2
ou�
ox�

� �2

þ ov�
oy�

� �2
" #

þ ou�
oy�

þ ov�
ox�

� �2

� 2

3

ou�
ox�

þ ov�
oy�

� �2

ð7Þ

and the variables were made dimensionless as

ðx�; y�Þ ¼ ðx; yÞ=H ð8aÞ

ðu�; v�Þ ¼ ðu; vÞ=ða=HÞ ð8bÞ

pd� ¼ ðp þ q0gyÞ=½q0ða=HÞ2
 ð8cÞ

q� ¼ q=q0 ð8dÞ

T � ¼ ðT � T CÞ=DT ð8eÞ

b� ¼ b=b0 ð8fÞ
with DT = (TH � TC) and T0 = TC is in the absolute

scale. In this way, the dimensional absolute temperature

is obtained from the dimensionless temperature T
*

as T = T0[(DT/T0)T*
+ 1]. It is assumed that density

depends on temperature through the relation q =

q0[1 �b(T � T0)]. The emerging dimensionless govern-

ing parameters are

Pr ¼ m=a ð9aÞ

Ra ¼ gb0 DTH
3

ma
ð9bÞ
Ec ¼ ða=HÞ2

cP DT
ð9cÞ

Sometimes the Gebhart number is used, defined as

Ge = gb0H/cP, being EcPr = Ge/Ra.

If the fluid has constant density, or if the Boussinesq

approximation is considered, it is q
*
= 1, b = b0 and

b
*
= 1, and the term (ou

*
/ox

*
+ ov

*
/oy

*
) vanishes in

Eqs. (4), (5) and (7). It is assumed here that the Bous-

sinesq approximation is introduced once the energy con-

servation equation obtained, thus retaining the term

corresponding to the work of pressure forces. If the fluid

is taken as an ideal gas, b = 1/T and b
*
= T0/T = 1/[(DT/

T0)T*
+ 1], and it is b0T0b*[(DT/T0)T*

+ 1] = 1 in Eq. (6).

Natural convection heat transfer problem is usually

solved in its dimensionless form, taking the dimension-

less driving pressure pd� as defined by Eq. (8c), which is

the unique pressure force related with fluid motion.

However, pressure entering into the energy conservation

equation, Eq. (6), is the (thermodynamic) absolute pres-

sure, as thermodynamic relations have been used to ob-

tain the expression for the work of pressure forces

[21,22], and it is ðop�=ox�Þ ¼ ðopd�=ox�Þ and ðop�=oy�Þ ¼
ðopd�=oy�Þ � RaPr=ðb0 DT Þ. Nonisotropic normal stresses
can exist in a fluid in motion, and only the assumption of

local equilibrium allows the mean compressive stress to

be interpreted as the thermodynamic pressure. In partic-

ular, special care needs to be taken when interpreting

pressure for incompressible fluids in motion [22].

Looking on Eq. (6), the two last terms can be identi-

fied as the work of pressure forces and the viscous dissi-

pation, respectively. By the reasons explained above,

when dealing with thermodynamic analysis, application

of the First Law of Thermodynamics to the overall

enclosure gives

ð� _QH � _QCÞ
kDT

þ
Z
V �

Ecb0T 0b�
DT
T 0

T � þ 1

� �

� u�
opd�
ox�

þ v�
opd�
oy�

� RaPr
b0 DT

� �� �
dV �

þ
Z
V �

EcPrU� dV � ¼ 0 ð10Þ

where the integrals extend to the overall domain of the

enclosure. The volume integral of the divergence of the

dimensionless heat flux was transformed into surface

integrals using the Gauss� Theorem, and they give the

dimensionless heat flows (the Nusselt numbers) entering

and leaving the domain. As _QH þ _QC ¼ 0, it isZ
V �

Ecb0T 0b�
DT
T 0

T � þ 1

� �

� u�
opd�
ox�

þ v�
opd�
oy�

� RaPr
b0 DT

� �� �
dV �

þ
Z
V �

EcPrU� dV � ¼ 0 ð11Þ
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Locally, the term corresponding to the work of pressure

forces and the viscous dissipation term can be different.

However, the integral of these two energy terms ex-

tended to the overall enclosure must cancel.

Thus, in order to have heat transfer results consistent

with the First Law of Thermodynamics, special care

must be taken when considering the viscous dissipation

effects in the energy conservation equation, noting that:

(i) Result j _QCj ¼ j _QHj or, equivalently, NuC = NuH, is

the unique relation respecting the First Law of Thermo-

dynamics; (ii) not only the overall values of the Nusselt

numbers must satisfy NuC = NuH, but the fluid and

temperature fields must be evaluated from the correct

formulation of the energy conservation equation, includ-

ing all the relevant sources and sinks; (iii) integration

methods used must be consistent with the result given

by Eq. (11); (iv) pressure involved in the work of pres-

sure term is the (total) absolute pressure and not the

driving pressure; and (v) assessment of using the Bous-

sinesq approximation must be related not only with

the difference on the involved thermal levels [23], but

also on the verification of Eq. (11), noting that the influ-

ence of the density variations spread over the involved

equations.

3.2. Numerical modeling and analysis of results

The natural convection problem in the square enclo-

sure with side length H was solved in its dimensionless

form using a control volume finite element method

[24], with a 75 · 75 non-uniform mesh, which expands

from the walls to the center with a geometric expansion

factor equal to 1.05. Results were obtained for the differ-

ent conditions as detailed in Table 1, and for Pr = 1,

Ra = 105, DT = 10 K, and b0 = 1/T0 K
�1. In this work,

ideal gas means only that bT = 1, and not that a closed

thermodynamic relation exists between temperature and

pressure. In other words, the fluid is taken as incom-

pressible but dilatable. For any fluid, temperature is

obtained from the energy conservation equation and

pressure is obtained from the flow solution.
Table 1

Different conditions and terms in the energy conservation equation, N

the dimensionless overall viscous dissipation, D
*
and dimensionless o

Ec T0 [K] Boussinesq

approximation

Ideal gas Viscous

dissipation

Wor

pres

10�5 300 Yes No Yes No

10�5 300 Yes No Yes Yes

10�5 300 No No Yes No

10�5 300 No No Yes Yes

10�5 300 No Yes Yes No

10�5 300 No Yes Yes Yes

10�6 300 No Yes Yes Yes

10�7 300 No Yes Yes Yes

10�5 500 No Yes Yes Yes
From the results of Table 1 it is clearly concluded

that erroneous results are obtained if only the viscous

dissipation term is considered into the energy conserva-

tion equation, in what concerns the flow and tempera-

ture fields, and also the overall Nusselt number of the

enclosure. When the viscous dissipation and the work

of pressure forces are taken into account, the small dif-

ferences on the numerical values of the Nusselt num-

bers and on the integrals of such terms can be

attributed to the numerical approximations introduced

to obtain them. Even so, the obtained results are coher-

ent. For example, introduction of results from the

fourth line of Table 1 into Eq. (10) lead to

(�13.258 + 13.139) + (0.1191 � 0.2384) = 0, that is,

0.119 � 0.119 = 0. It is also observed that the overall

Nusselt number is not significantly affected by the con-

sideration of the Boussinesq approximation or the ideal

gas consideration (bT = 1), once the remaining condi-

tions are fixed.

For comparison purposes, the streamlines and the

isotherms for the situations corresponding to the first

and second rows of Table 1 are presented in Fig. 2a

and b, respectively. It is clear that an inconsistent formu-

lation of the energy conservation (Fig. 2a and first row

of Table 1) leads to considerably different results when

compared with the ones corresponding to the consistent

formulation of the energy conservation (Fig. 2b and sec-

ond row of Table 1). In isotherms of Fig. 2a it is ob-

served that thy are denser near the vertical right cold

wall, thus indicating that j _QCj > j _QHj. When the work

of pressure forces is taken into account, as presented

in Fig. 2b, both the flow and temperature fields present

significant changes. In this case, flow occurs only very

close to the walls, and the isotherms are very dense close

to the walls and very sparse in the interior of the enclo-

sure. Thus, intense temperature gradients exist close to

the walls, leading to higher values of the Nusselt num-

ber, in this case the same overall value at the left and

right vertical walls. As present in Table 1, very different

results are obtained for the Nusselt numbers when the

work of pressure forces is considered or not, and those
usselt numbers at the hot and cold vertical walls, and results for

verall work of pressure forces, W
*

k of

sure forces

NuH NuC D
*

W
*

3.658 5.565 1.907 0.000

13.198 13.200 0.1192 �0.1172
3.621 5.551 1.931 0.000

13.258 13.139 0.1191 �0.2384
3.617 5.465 1.848 0.000

13.024 13.024 0.1157 �0.1157
7.053 7.052 0.06096 �0.0613
4.884 4.883 0.01582 �0.01617
15.028 15.028 0.08008 �0.08005
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Fig. 2. Comparison of the flow (left) and temperature (right) fields: (a) without considering the work of pressure forces (conditions of

the first row of Table 1); and (b) considering the work of pressure forces (conditions of the second row of Table 1).
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corresponding to the first row are inconsistent regarding

the First Law of Thermodynamics. As it is ðop�=ox�Þ ¼
ðopd�=ox�Þ and ðop�=oy�Þ ¼ ðopd�=oy�Þ � RaPr=ðb0 DT Þ, if
the vertical pressure gradient is dominated by the term

�RaPr/(b0DT) � �RaPr it is v
*
(op

*
/oy

*
) < 0 near the

left vertical wall and v
*
(op

*
/oy

*
) > 0 near the right verti-

cal wall. Thus, taking present the energy conservation

equation, Eq. (6), the work of pressure forces acts like

a heat sink close to the left hot vertical wall and like a

heat source close to the right cold vertical wall. This is

the main reason for the high values of the Nusselt num-

ber obtained when the work of pressure forces is taken

into account.
3.3. The natural convection problem in enclosures as a

heat engine

For a better understanding of the natural convection

problem as a heat engine, as presented in Fig. 1b and

explained in Section 2, the best way is to analyze the

entropy generation equation, Eq. (2). From that

equation, and from [20], it can be stated that

_Sgen ¼ ð _SgenÞCD þ ð _SgenÞD

¼
Z
V

k

T 2

oT
ox

� �2

þ oT
oy

� �2
" #

dV þ
Z
V

l
T

UdV ð12Þ
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whose dimensionless version is

_Sgen;� ¼
_SgenT 0

kDT

¼
Z

V �

DT
T 0

1

½ðDT=T 0ÞT � þ 1
2
oT �

ox�

� �2

þ oT �

oy�

� �2
" #

dV �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð _Sgen;�ÞCD

þ
Z

V �

EcPrU�

½ðDT=T 0ÞT � þ 1
 dV �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð _Sgen;�ÞD

ð13Þ

For example, for the situation in the last row of Table 1,

it is ð _Sgen;�ÞCD ¼ 0:07930 and ð _Sgen;�ÞD ¼ 0:2152, and it is

ð _Sgen;�ÞCD þ ð _Sgen;�ÞD ¼ 0:2945. From the dimensionless

version of Eq. (2) it can be obtained that ð _Sgen;�Þ ¼
NuðDT=T 0ÞðDT=T 0 þ 1Þ�1 ¼ 0:2947.

In this way, the natural convection heat transfer

problem can be interpreted as schematically presented

in Fig. 1b, where part of the entering heat is transferred

by conduction, and the remaining is used to feed the

�heat engine� that causes the fluid motion, the work

delivered by such an engine being viscously dissipated

as heat. This quantitative analysis completes the descrip-

tion of the natural convection problem as a heat engine,

as explained in [20], and it gives a more precise analysis

of the problem when compared with the study reported

in [25].

Another possible model is to consider heat being en-

tirely transferred by conduction between temperature

TH and an intermediate temperature T 0
H < TH, as well

as between a lower intermediate temperature T 0
C > T C

and the lowest temperature TC. Between temperatures

T 0
H and T 0

C heat is used to drive a thermal engine, which

delivers mechanical power that is entirely dissipated by

friction. This corresponds to the heat engine and the

brake system operating between the intermediate tem-

perature levels T 0
H and T 0

C only.

The illustration of the lost available work process as

a brake dissipating the mechanical power delivered by a

heat engine operating between two different thermal lev-

els has been proposed by Bejan [26,27], when analyzing

the irreversibility associated with the heat transfer pro-

cess across a nonzero temperature difference. This same

model has been used by Bejan [28], to explain the steady

natural convection heat transfer process as the situation

where the useful delivered mechanical power, in the

expansion–contraction cycle experienced by the operat-

ing fluid, is entirely dissipated by friction.

3.4. Numerical values of the dimensionless governing

parameters

The natural convection problem is usually solved in

its dimensionless form, whose results must refer to prac-

tical situations. In what concerns the numerical values
assumed by the dimensionless governing parameters,

care must be taken about the values given to such

parameters and their relevance in dimensional terms.

For air, water or other common fluids at room temper-

ature, it can be seen that the practical laminar situations

lead to Ra 
 103–109 and Ec < 
10�9, parameters for

which the dissipation effects are not �visible� on the flow

and temperature fields and on the heat transfer parame-

ters. In an attempt to increase the importance of the vis-

cous dissipation effects, it is tempting to increase Ec.

However, such values of the governing dimensionless

parameters can make the viscous dissipation �visible�
on the flow and temperature fields and on the heat trans-

fer parameters but they do not correspond to realistic

situations.
4. Enclosures filled with a fluid-saturated porous medium

The main aspects referred above for enclosures filled

with a single fluid apply equally to enclosures filled with

a fluid-saturated porous medium. The flow within the

porous medium can be modeled using the Darcy Law

(for low fluid velocities) or using more elaborate models

like the Brinkman–Forchheimer flow model [29]. In

what follows the Darcy flow model is used, the main

conclusions remaining unchanged even if more elaborate

models are used. Following Nield and Bejan [29], the

viscous dissipation term corresponding to the use of

the Brinkman–Forchheimer model is close to the one

corresponding to the simpler Darcy flow model, as given

by the last term in Eq. (16). Also, in this case, care

should be taken when considering the applicability of

the Boussinesq approximation.

The velocity components and pressure are linked

through the Darcy Law,

u� ¼ �Da
Pr

op�
ox�

ð14aÞ

v� ¼ �Da
Pr

op�
oy�

þ RaT � �
Ra

b0 DT
ð14bÞ

and the complete equations governing the natural con-

vection heat transfer problem, for a Boussinesq fluid

(b
*
= 1), are

0 ¼ o2w�
ox2�

þ o2w�
oy2�

þ Ra
oT �

ox�
ð15Þ

o

ox�
ðq�u�T �Þ þ

o

oy�
ðq�v�T �Þ ¼

o2T �

ox2�
þ o2T �

oy2�

þ Ecb0T 0

DT
T 0

T � þ 1

� �
u�

op�
ox�

þ v�
op�
oy�

� �
þ EcPr

Da
ðu2� þ v2�Þ ð16Þ



2340 V.A.F. Costa / International Journal of Heat and Mass Transfer 48 (2005) 2333–2341
where the dimensionless variables and governing param-

eters were defined as

p� ¼ p=½q0ða=HÞ2
 ð17aÞ

w� ¼ w=a ð17bÞ

Ra ¼ gb0 DTKH
ma

ð17cÞ

Da ¼ K

H 2
ð17dÞ

In the foregoing equations, the terms corresponding to

the work of pressure forces and to the viscous dissipa-

tion were modeled as suggested by Nield and Bejan

[29]. The velocity and pressure are linked though the

Darcy Law, and the components of the pressure gradi-

ent to introduce in Eq. (16) can be obtained as

op�
ox�

¼ � Pr
Da

u� ð18aÞ

op�
oy�

¼ � Pr
Da

v� þ
RaPr
Da

T � �
RaPr
Da

1

b0 DT
ð18bÞ

Also in this case, and by the same reasons as explained

above, for the enclosures filled with a single fluid, it must

be

Z
V �

Ecb0T 0

DT
T 0

T � þ 1

� �
u�

op�
ox�

þ v�
op�
oy�

� �
dV �

þ
Z
V �

EcPr
Da

ðu2� þ v2�ÞdV � ¼ 0 ð19Þ

where the volume integrals extend to the overall enclo-

sure. The local terms corresponding to the work of pres-

sure forces and to the viscous dissipation term can be

different. However, Eq. (19) must be verified to have

heat transfer results consistent with the First Law of

Thermodynamics.

If the problem is solved in its dimensionless form,

care must be taken in what concerns the numerical val-

ues assumed by the dimensionless governing parameters.

For air, water or other common fluids at room temper-

ature, it can be seen that the practical laminar situations

lead to Ra 
 10–103 and Ec < 
10�9, parameters for

which the dissipation effects are not �visible�. In an at-

tempt to increase the importance of the viscous dissipa-

tion effects, it is tempting to increase Ec, to levels that do

not correspond to realistic situations [10,11]. From Eqs.

(9c), (17b) and (17c) it can be obtained that

H ¼ Ra
EcPr
Da

� �
cP
gb0

� �
ð20Þ

Taking Ra = 103 and (EcPr/Da) = 10�3, for fluids at

room temperature it is: H = 3.1 · 104 m for air,

H = 1.5 · 106 m for water, and H = 2.8 · 105 m for oil,
that is, non-realistic values for the side length of the dif-

ferentially heated square enclosure.
5. Conclusions

Convection heat transfer problems including the ef-

fect of viscous dissipation should be carefully modeled

in order to respect the First Law of Thermodynamics.

For this problem, both the viscous dissipation term

and the work of pressure forces must be included into

the energy conservation equation, due to the fact that

is the work of pressure forces that moves the fluid, and

this energy action is compensated by the viscous dissipa-

tion effect. If it is not the case, such enclosures behave as

heat generators, violating the First Law of Thermody-

namics. This applies equally to enclosures filled with a

single fluid or to enclosures filled with fluid-saturated

porous media.

Recognizing that the integral of the work of the pres-

sure forces must be equal to the integral of the viscous

dissipation, the integrals extending to the overall enclo-

sure, one has a very useful criterion that can be used in

order to assess how correct are the models used to ac-

count for the work of the pressure forces and for the vis-

cous dissipation. When dealing with enclosures filled

with a single fluid the model is established in an �exact�
way, but the usual use of the Boussinesq approximation

must be assessed taking into account both the maximum

temperature difference and the equality of such integrals.

When dealing with enclosures filled with fluid-saturated

porous media, the model is established on a comparative

basis, taking as reference what happens in the enclosures

filled with a single fluid. Also in that case the use of the

Boussinesq approximation must be assessed taking into

account both the maximum temperature difference and

the equality of such integrals.

From a careful analysis of the simple problem of nat-

ural convection heat transfer in a square enclosure,

important conclusions are extracted which apply also

when considering the viscous dissipation effects in other

heat transfer problems, involving natural convection

heat transfer or mixed convection heat transfer. When

dealing with mixed convection heat transfer problems,

part of the viscous dissipation term comes from the

�forced� mechanical energy input and part comes from

the work of pressure forces (associated with the natural

convection component of the flow). Only the consider-

ation of the complete energy conservation equation

can give the correct results in what concerns the

flow and temperature fields, and the heat transfer

parameters.

Also an improved picture is given to see the natural

convection heat transfer problem in enclosures as a heat

engine.
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